Login    New User    Forgot Password    Help      

Exceptions Handling

Java Tutorials

Exceptions in java are any abnormal, unexpected events or extraordinary conditions that may occur at runtime. They could be file not found exception, unable to get connection exception and so on. On such conditions java throws an exception object. Java Exceptions are basically Java objects. No Project can never escape a java error exception.

Java exception handling is used to handle error conditions in a program systematically by taking the necessary action. Exception handlers can be written to catch a specific exception such as Number Format exception, or an entire group of exceptions by using a generic exception handlers. Any exceptions not specifically handled within a Java program are caught by the Java run time environment

An exception is a subclass of the Exception/Error class, both of which are subclasses of the Throwable class. Java exceptions are raised with the throw keyword and handled within a catch block.

 

Example

class DivByZero {
public static void main(String args[]) {
System.out.println(3/0);
System.out.println(“Pls. print me.”);
}
}

Displays this error message


Exception in thread "main"
java.lang.ArithmeticException: / by zero
at DivByZero.main(DivByZerojava:3)
● Default exception handler
– Provided by Java runtime
– Prints out exception description
– Prints the stack trace
● Hierarchy of methods where the exception occurred
– Causes the program to terminat

What happen when error occurs

When an error occurs within a method, the method creates an object and hands it off to the runtime system. The object, called an exception object, contains information about the error, including its type and the state of the program when the error occurred. Creating an exception object and handing it to the runtime system is called throwing an exception.

After a method throws an exception, the runtime system attempts to find something to handle it. The set of possible "somethings" to handle the exception is the ordered list of methods that had been called to get to the method where the error occurred. The list of methods is known as the call stack (see the next figure).

The runtime system searches the call stack for a method that contains a block of code that can handle the exception. This block of code is called an exception handler. The search begins with the method in which the error occurred and proceeds through the call stack in the reverse order in which the methods were called. When an appropriate handler is found, the runtime system passes the exception to the handler. An exception handler is considered appropriate if the type of the exception object thrown matches the type that can be handled by the handler.

The exception handler chosen is said to catch the exception. If the runtime system exhaustively searches all the methods on the call stack without finding an appropriate exception handler, as shown in the next figure, the runtime system (and, consequently, the program) terminates.

The Three Kinds of Exceptions

The first kind of exception is the checked exception. These are exceptional conditions that a well-written application should anticipate and recover from. For example, suppose an application prompts a user for an input file name, then opens the file by passing the name to the constructor for java.io.FileReader. Normally, the user provides the name of an existing, readable file, so the construction of the FileReader object succeeds, and the execution of the application proceeds normally. But sometimes the user supplies the name of a nonexistent file, and the constructor throws java.io.FileNotFoundException. A well-written program will catch this exception and notify the user of the mistake, possibly prompting for a corrected file name.

Checked exceptions are subject to the Catch or Specify Requirement. All exceptions are checked exceptions, except for those indicated by Error, RuntimeException, and their subclasses.

The second kind of exception is the error. These are exceptional conditions that are external to the application, and that the application usually cannot anticipate or recover from. For example, suppose that an application successfully opens a file for input, but is unable to read the file because of a hardware or system malfunction. The unsuccessful read will throw java.io.IOError. An application might choose to catch this exception, in order to notify the user of the problem — but it also might make sense for the program to print a stack trace and exit.

Errors are not subject to the Catch or Specify Requirement. Errors are those exceptions indicated by Error and its subclasses.

The third kind of exception is the runtime exception. These are exceptional conditions that are internal to the application, and that the application usually cannot anticipate or recover from. These usually indicate programming bugs, such as logic errors or improper use of an API. For example, consider the application described previously that passes a file name to the constructor for FileReader. If a logic error causes a null to be passed to the constructor, the constructor will throw NullPointerException. The application can catch this exception, but it probably makes more sense to eliminate the bug that caused the exception to occur.

Runtime exceptions are not subject to the Catch or Specify Requirement. Runtime exceptions are those indicated byRuntimeException and its subclasses.

 

Java Tutorials